skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fourcade, Marion"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 17, 2026
  2. Free, publicly-accessible full text available June 24, 2026
  3. Modern computational text classification methods have brought social scientists tantalizingly close to the goal of unlocking vast insights buried in text data—from centuries of historical documents to streams of social media posts. Yet three barriers still stand in the way: the tedious labor of manual text annotation, the technical complexity that keeps these tools out of reach for many researchers, and, perhaps most critically, the challenge of bridging the gap between sophisticated algorithms and the deep theoretical understanding social scientists have already developed about human interactions, social structures, and institutions. To counter these limitations, we propose an approach to large-scale text analysis that requires substantially less human-labeled data, and no machine learning expertise, and efficiently integrates the social scientist into critical steps in the workflow. This approach, which allows the detection of statements in text, relies on large language models pre-trained for natural language inference, and a “few-shot” threshold-tuning algorithm rooted in active learning principles. We describe and showcase our approach by analyzing tweets collected during the 2020 U.S. presidential election campaign, and benchmark it against various computational approaches across three datasets. 
    more » « less
    Free, publicly-accessible full text available April 18, 2026